Reprogramming Hematopoietic Cells Into Type 1 Dendritic Cells

June 30, 2022
MSc. Thesis - Technical University of Berlin

Eda Saglam

Related Data:



Dendritic cells (DCs) are professional antigen-presenting cells able to induce potent and long-lasting adaptive immune responses. Within the DC family, type 1 conventional dendritic cells (cDC1s) excel on the ability to cross-present exogenous antigens to cytotoxic T cells, a critical step for inducing antitumor immunity. However, cDC1s are rare in peripheral blood and in vitro differentiation of monocytes, CD34+ progenitors or induced pluripotent stem cells results in the generation of heterogenous DC populations with poor antigen presentation capacity and limited ability to migrate to lymph nodes. Our group has recently identified the transcription factors PU.1, IRF8 and BATF3 (PIB) as sufficient to reprogram mouse and human fibroblasts into functional cDC1-like cells. However, fibroblasts are not readily available in
sufficient numbers, in contrast to monocytes that are easily accessible in peripheral blood at high numbers.

Here, we investigated cDC1 reprogramming in THP-1 monocytic cell line and explored multiple viral and non-viral delivery systems to achieve efficient gene delivery to primary monocytes. We showed that overexpression of PIB mediated by lentiviral vectors allowed cDC1 reprogramming of THP-1 cells at high efficiency. Reprogrammed THP-1 cells expressed the cDC1 surface markers CLEC9A and CD141, and the co-stimulatory molecules CD40 and CD80. Interestingly, high levels of CLEC9A expression were detected as early as 3 days after transduction, suggesting that reprogramming progresses with fast kinetics in monocytic cells. We observed that toll-like receptor stimulation in reprogrammed THP-1 cells induced upregulation of co-stimulatory molecules and increased secretion of inflammatory cytokines. Interestingly, cDC1 reprogramming was associated with reduced tumorigenicity of THP-1 cells. Lastly, we tested different viral and non-viral delivery systems to further optimize the transduction of primary monocytes and peripheral blood mononuclear cells and observed that AAV vectors and mRNA allowed higher transgene delivery to primary monocytes when compared to lentiviral vectors.

This work demonstrates that overexpression of PIB in human monocytic cells allows efficient and fast reprogramming to cDC1-like cells and gives insights into alternative viral and non-viral systems allowing transgene delivery to primary monocytes and other hematopoietic cells. Ultimately, this study will open the opportunity to develop efficient cDC1-based vaccines for cancer immunotherapy.